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Abstract

This paper considers the motion of a liquid droplet on a solid surface. When capillary relaxation is much faster than

the motion of the contact line, the fluid geometry and its dynamical evolution can be characterized in terms of the con-

tact line alone. This problem can be cast in terms of boundary integral equations involving a Dirichlet–Neumann map

coupled to a volume conservation constraint. A computational method for this formulation is described which has two

principal advantages over approaches which track the entire free surface: (1) only the curve which describes the contact

line is computed and (2) the resulting method exhibits only mild numerical stiffness, obviating the need for implicit time-

stepping. Effects of both capillary and body forces are considered. Computational examples include surface inhomoge-

neities, topological transitions and cusp formation.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Many practical applications involve the motion of a fluid over a solid surface. A large body of theory has

emerged about the microscopic mechanisms which regulate the motion of the contact line

[4,9,11,18,23,29,30,35,42], whereas less effort has been concentrated toward understanding the overall

dynamics of wetting flows.
A typical approach to modeling wetting dynamics is the use of lubrication-type equations (e.g. [9,29]).

While these models can incorporate numerous physical phenomenon, they suffer from several computa-

tional drawbacks. Capillary-driven motions necessarily lead to fourth order parabolic equations, which typ-

ically require expensive implicit algorithms. In addition, these equations are degenerate, and therefore

require special treatment [17,43] to obtain sensible non-negative solutions (furthermore, the physical signif-

icance of these solutions is unclear because uniqueness has not been established). An alternative approach is
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the use of disjoining pressure models [28,33,34], which can be well-posed but introduce a small horizontal

length scale. As with diffuse interface methods [12], it is necessary to resolve this small scale numerically,

leading to large grids or requiring adaptive mesh procedures.

A widely utilized class of macroscopic wetting models are laws which relate the speed of the contact line

to other local properties of the fluid, in particular the ‘‘apparent’’ contact angle h, the macroscopic angle
which the fluid makes with the solid surface. For example, one of the most frequently cited empirical laws

was introduced by Tanner [39],
V c � h3; ð1Þ

although many other formulas are available [4,7,10,41]. Laws like (1) may arise as leading-order approxi-

mations of the underlying dynamical equations [3,7,8,14,20,41], and have also been derived on the basis of

alternative physical theories [4]. The method proposed here only assumes that such a relationship exists.

There are many circumstances where contact line motion is in some sense slow compared with the

dynamics in the fluid�s interior: droplet spreading [13]; flows on moderately inclined surfaces [2]; contact
line motion restricted by pinning effects; motion initiated by slow external variation of wetting properties

(e.g., electrowetting [40]). In this instance, the pressure is essentially constant, and the fluid�s geometry can

therefore be described as a ‘‘capillary’’ surface, a minimizer of surface and bulk energies subject to the con-

straint of a fixed contact line. This approximation, known as the quasisteady limit, was utilized first by

Greenspan [16], and has appeared elsewhere [2,13,14,27,32,36]. Similar to what is presented here, Hocking

and Miksis [19] used a boundary integral computation to study a ridge of fluid in the quasisteady limit.

Because the fluid geometry is entirely characterized by the contact line, the dynamic contact angle is a

function of this curve alone. Together with the linearity of the minimization problem, this allows the
evolution to be computed using integral equations along the curve (e.g. [1,22]). In contrast to PDE formu-

lations, the computation only involves discretizing a curve instead of a two-dimensional domain. Further-

more, it will be shown that the resulting computational algorithm does not exhibit the stiffness problems

intrinsic to high-order parabolic equations.
2. Problem formulation

If the motion of the contact line is in some sense slow compared to the rate at which capillary forces act,

the fluid may be thought to be always in mechanical equilibrium. In the absence of body forces, the free-

surface shape is therefore a minimizer of the liquid–vapor surface energy, subject to the constraint of a fixed

contact line. A more precise discussion about the applicability of this quasi-steady assumption is presented
in Appendix A.

In this paper, the fluid�s free surface is assumed to be a graph h(x,y). The function h has support X,
whose boundary is the contact line C. In the small angle limit [6], the linearized contribution of surface en-

ergy is given by
c
Z
X
1þ jrhj2dx; ð2Þ
where c is the liquid–vapor surface energy, which is presumed constant here. The minimizer of this expres-

sion, subject to the constraint of constant volume, is the quasi-steady droplet shape. Finding the minimizer

amounts to solving the Euler–Lagrange problem
Dh ¼ k; hjC ¼ 0;

Z
hdx ¼ M � volume; ð3Þ
where k is a Lagrange multiplier, which is essentially just the negative hydrostatic pressure.
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The ‘‘apparent’’ contact angle h is defined on the boundary of X (again in the small angle limit) as
h ¼ � oh
on

; n ¼ outward normal of C: ð4Þ
The motion of C is then specified by prescribing the normal velocity, denoted Vn, as a function of this

angle,
V n ¼ f ðh; he; xÞ ¼ f ð�oh=on; he; xÞ: ð5Þ

The function f can be any constitutive law relating the contact line velocity to the apparent contact angle

h and the equilibrium contact angle he. Generally speaking, f is positive when h > he and is an increasing
function of h. The spatial dependence of f may arise as a consequence of substrate inhomogeneities or other

physical influences (see Section 3).
2.1. Integral equations

The Lagrange multiplier can be eliminated by the substitution,
w ¼ h
k
� jxj2

4
; ð6Þ
so that w satisfies the boundary value problem,
Dw ¼ 0; wjC ¼ � jxj2

4
: ð7Þ
The normal derivative of w can be related to its boundary values by standard Green�s function tech-

niques. Letting
Gðx; x0Þ ¼
1

2p
ln jx� x0j ð8Þ
be the free-space Green�s function for the Laplacian, one has the boundary integral equation,
Z
C
wðxÞ oGðx; x0Þ

on
� Gðx; x0Þ

owðxÞ
on

dsðxÞ ¼ wðx0Þ
2

; x0 2 C: ð9Þ
With the aid of the divergence theorem, the volume conservation constraint can be written,
M ¼
Z
X
hD

jxj2

4

 !
dx

¼
Z
X
Dh

jxj2

4
dxþ

Z
C

1

2
hx � n� jxj2

4

oh
on

ds

¼ k
Z
X

jxj2

4
dx�

Z
C

jxj2

4

oh
on

ds:

ð10Þ
Using (6), the identity $ Æ (|x|2 x) = 4|x|2 and the divergence theorem, this constraint takes the form of the

boundary integral,
M ¼ k
Z
C

jxj2x
16

� jxj2

4

ow
on

þ 1

2
x � n

� �
ds: ð11Þ
This allows k to be computed from ow/on only using information on the curve C.
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2.2. Spatial discretization and approximation of integrals

The curve C is parameterized by arclength s, and is subdivided into n evenly spaced points x(si),

i = 0, . . ., n � 1, where si = iL/n and L is the total length of the curve. The second term of the integrand

in (9) has a logarithmic singularity which must be dealt with carefully. This term can be split into singular
and analytic parts as
GðxðsÞ; xðs0ÞÞf ðxðsÞÞ ¼ f ðxðsÞÞ 1

4p
ln 4sin2 s� s0

2

� �h i
þ K1ðs; s0Þ

� �
; ð12Þ
where f(x(s)) has been identified with the normal derivative of w and
K1ðs; s0Þ ¼
1

2p
ln jxðsÞ � xðs0Þj �

1

2
ln 4sin2 s� s0

2

� �h i� �
: ð13Þ
The integral of the logarithmic part is approximated using the spectrally accurate quadrature formula

[25],
 Z L

0

f ðxðsÞÞ ln 4sin2 s� si
2

� �h i
ds ¼ L

2

Xn�1

j¼0

qji�jjf ðxðsjÞÞ; ð14Þ
where the weights are
qj ¼ � 4

n

Xn=2�1

m¼1

1

m
cos

mjp
n=2

� ð�1Þj

ðn=2Þ2
; j ¼ 0; . . . ; n� 1: ð15Þ
We note that the kernel oG(x,x0)/on is continuous along the curve C; in particular we have [15],
oGðxðsÞ; x0ðsÞÞ
on

� K2ðs; s0Þ ¼
1
2p

xðsÞ�xðs0Þð Þ�n
jxðsÞ�xðs0Þj2

; s 6¼ s0;

1
4p jðs0Þ; s ¼ s0;

(
ð16Þ
where j(s0) is the curvature of C at s0. The trapezoid rule is used to evaluate the integrals involving K1,K2 as

well as the integral in Eq. (11), giving spectral accuracy [37].

The result of all of this is that (9) is approximated by a dense, symmetric linear system in the unknowns

fj ” ow/on(sj) of the form,
Xn�1

j¼0

Lqji�jj

8p
þ K1ðsj; siÞ

� �
fj ¼ �wðxðsiÞÞ

2
þ
Xn�1

j¼0

K2ðsj; siÞwðxðsjÞÞ: ð17Þ
For the examples given below, this system is not large, and is solved efficiently using standard Cholesky

factorization.

2.3. Time evolution

Once ow/on is known, Eq. (11) is used to find k. The contact angle is determined using (6), giving
h ¼ �k
ow
on

þ 1

2
x � n

� �
; ð18Þ
from which the contact line velocity can be evaluated according to (5).

In contrast to other formulations of capillary driven fluid motions (e.g. [21]), this moving interface

problem does not suffer from severe numerical stiffness. In Appendix B we show that a wavenumber k
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perturbation to a circular interface has a decay rate r � �k. This suggests that only a mild, CFL-type

restriction on the timestep is necessary to achieve stability, and is verified by the numerical experiments

we present below.

In addition to the normal interface velocity, an artificial tangential velocity Vt is constructed to maintain

the equal arclength representation. Appendix C details how this velocity is computed. The gridpoints are
updated according to the explicit scheme
xðt þ DtÞ ¼ xðtÞ þ DtðV nnþ V ttÞ: ð19Þ

The tangent and normal vectors t,n are found by spectral differentiation of x(s):
t ¼ dx

ds

� �
; n ¼ dx

ds

� �?

: ð20Þ
The time step Dt is adapted to satisfy a constraint of the form
C2Ds 6 Dtmax jV nj 6 C1Ds; ð21Þ

where the tolerances satisfy C2 < C1 � 1.
3. Computational results

The purpose of this section is to demonstrate qualitative phenomenon using the boundary integral

method. We focus on several situations of interest: droplet spreading on homogeneous and heterogenous

surfaces, topological transitions, and motion driven by heterogenous wetting. Gravitational effects will

be considered in Section 4.
3.1. Spreading and relaxation dynamics

In the simplest case of a perfectly homogeneous substrate, many, but not all initial configurations will
eventually obtain a circular shape. In the perfect-wetting case (he = 0), this solution will continue to spread

forever, whereas in the partial wetting case (he > 0), a circular equilibrium will be reached. The other pos-

sible equilibria are multiple circular drops; these may result from droplet splitting, which we discuss in

Section 3.3.

In the partially wetting case, a commonly used expression that relates the contact angle and speed is

[7,41]
V n ¼ h3 � h3e ; ð22Þ
where he is the equilibrium contact angle. Setting he = 0 reduces this to expression (1), corresponding to a

perfectly wetting surface.
The computation in Fig. 1 shows a typical evolution of a drop into a convex, nearly circular drop. This

drop continues to spread until the equilibrium radius
r0 ¼
4M
phe

� �1=3

ð23Þ
is reached. Alternatively, growth of the circular interface on a perfectly wetting substrate will eventually

follow the power law for the radius r � t1/10 [5].
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Fig. 1. Spreading of a non-convex fluid droplet (he = 1, M = 4). The contact line first approaches a circular shape, then spreads until

equilibrium (the outer-most curve) is reached.
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3.2. Flow around nonwetting defects

Everyday experience suggests that fluid contact lines frequently get stuck or ‘‘pinned’’ as a result of

spatially localized surface defects. Such a defect can be modeled as a region R where contact line motion

is prohibited. In a perfect wetting situation, a law incorporating this effect can be written
V n ¼ ½1� vR�h3; ð24Þ

where vR is the characteristic function of the set R.

Fig. 2 shows the evolution of the spreading fluid around a circular defect, with the same initial data as in
section 3.1. Once the defect in encountered, spreading proceeds in a non-uniform fashion. Eventually the

fluid will pass around the defect entirely, and the contact line will self-intersect. The numerical method

makes no allowance for this to happen, although a scheme to reconnect the interface (see, e.g. [24]) could

in principle be implemented to account for this.

3.3. Droplet splitting

Even without defects present, it is not clear that an irregular drop will always obtain a circular shape.
Here we demonstrate that an initially connected region can develop a self-intersection. This initial config-

uration is a ‘‘dumbell’’ shape, just two circular drops connected by a thin neck (see Fig. 3). It should be

pointed out that the symmetry here is somewhat important: if the circular regions on either side of the neck

were substantially different sizes (i.e., different radii of curvature), they would have different pressures and

the quasi-steady assumption leading to the original model would be violated.

The interfacial law assumed partial wetting: [10,13],
V n ¼ hðh2 � h2eÞ; he ¼ 0:7: ð25Þ

Other formulas describing partial wetting (e.g. (22)) appeared to give similar results.
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Fig. 2. Left: drop spreading around a non-wetting defect (512 gridpoints). Right: contact line motion near the defect.
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Fig. 3 show the evolution of the drop. As the neck narrows, fluid is sucked into the circular regions. It

eventually pinches at two different points along its length, generating self-intersections of C as in the pre-

vious example. One can speculate that the outcome is three drops: the two original ones and a ‘‘satellite’’

drop in the middle.

3.4. Heterogenous surface energies and droplet migration

Surface energies can vary spatially because of compositional differences, or because of imposed external
fields. Drops will preferentially move to lower their solid–liquid and solid–vapor energies, which equiva-

lently means that they will prefer to be on a more wettable surface with lower equilibrium contact angle.

This is the dynamical mechanism which allows control of fluids by ‘‘electrowetting’’ phenomenon [40],

for example.

This effect is incorporated here simply by adding a spatial dependence to the contact line law (22) of the

form he = he(x). In the example shown in Fig. 4, a drop is initially placed mostly on a surface with high

contact angle, with some of the drop on a more wettable (low contact angle) surface. The drop attempts

to reduce the area of its support on the high-contact angle surface by migrating to a lower energy surface.
Eventually the entire drop lies on the surface of higher wettability.
4. Gravitational effects

The effects of gravity can be included in a straightforward manner in the quasi-steady model. The total

energy is the sum of surface energy (2) and gravitational potential,
Z
X
cð1þ jrhj2Þ þ gq

h2

2
þ rðxÞh

� �
dx; ð26Þ
where g is the gravitational acceleration and q is the fluid density. Topographical effects are specified by

r(x), which designates the height of the underlying substrate. A non-dimensional description can be found

by rescaling all lengths by the capillary length
ffiffiffiffiffiffiffiffiffiffi
c=gq

p
. The corresponding Euler–Lagrange problem is
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Fig. 3. Evolution of a thin neck of fluid (512 gridpoints). Two drops (a) are connected by a thin neck of fluid, pinching occurs close to

each circular region (b), leading to splitting of the drop (c).
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Dh� h ¼ kþ rðxÞ; hjC ¼ 0;

Z
hdx ¼ M : ð27Þ
In order to eliminate the inhomogeneous term, let U(x) be any function that satisfies
DU� U ¼ rðxÞ: ð28Þ

The substitution w = h � U + k gives the homogeneous problem,
Dw� w ¼ 0; wjC ¼ �Uþ k: ð29Þ

Let w0,w1 solve the two independent boundary value problems:
Dw0 � w0 ¼ 0; w0jC ¼ �U; ð30Þ



Fig. 4. Migration of a droplet from a surface of low wettability (white, he = 1.5) to a surface of high wettability (grey, he = 0.5).
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Dw1 � w1 ¼ 0; w1jC ¼ 1: ð31Þ
so that w = w0 + kw1. The relationship between the mass constraint and the Lagrange multiplier can now be

stated in terms of ow0,1/on. For convenience, let q be some vector field whose divergence is U. Using 30,31,

the definition of w and the divergence theorem,
M ¼
Z
X
w0 þ Uþ kðw1 � 1Þdx

¼
Z
X
Dw0 þ Uþ kDðw1 � jxj2=4Þdx

¼
Z
C

rw0 þ qþ kðrw1 �
1

2
xÞ

� �
� nds:

ð32Þ
Therefore k is found as
k ¼
M �

R
Cðrw0 þ qÞ � ndsR

Cðrw1 þ 1
2
xÞ � nds : ð33Þ
4.1. Integral equations

To solve for the normal boundary derivatives corresponding to equations (30) or (31), one has the

boundary integral equation
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Fig. 5. Evolution of a drop (from left to right) on an inclined surface (slope = 0.6) showing the formation of a cusp. The right-most

droplet�s contact line exhibits unphysical self-intersection.

538 K.B. Glasner / Journal of Computational Physics 207 (2005) 529–541
Z
C
wðxÞ oGðx; x0Þ

on
� Gðx; x0Þ

owðxÞ
on

ds ¼ wðx0Þ
2

: ð34Þ
The Green�s function in this case is G = (1/2p)K0(|x � x0|), where K0 is the modified Bessel function of the

second kind. The kernel K0(r) has a logarithmic singularity akin to (8), and is treated using the same quad-

rature formulas as discussed in Section 2.2. The other numerical details are also similar.

4.2. Flow on an inclined plane: cusp formation

Recent experimental [31] and theoretical [2,38] studies have demonstrated that a droplet subjected to

gravitational forces may develop a contact line with a cusp at the fastest receding point. As an example,

consider a drop sliding on an inclined plane with slope a, described by the substrate height function

r(x,y) = �ax. The corresponding auxiliary functions U, q are
U ¼ ax; q ¼ 1

2
ax2i: ð35Þ
For a contact line law, we use (22) with equilibrium contact angle he = 1. The initial circular drop (radius

1, M = 0.5) both spreads and slides to the right. Fig. 5 shows the progression of the circular drop to one

which is has a cusp of finite angle on the trailing edge. It should be noted that past the point at which

the cusp forms, the numerical contact line self-intersects.
5. Conclusions

A versatile procedure for computing dynamical fluid wetting phenomenon has been presented. While the

quasi-steady model employed is only approximate, the gain in computational efficiency makes this method

attractive in contrast to two-dimensional PDE computations. The main drawback is the necessity of solving

dense, linear systems. For large problems (>1000 unknowns) this can be accomplished efficiently, however,

using a combination of iterative and fast-multipole methods [15].

The computational results here suggest a number of challenging problems reserved for future work. In-

cluded among them are the specific roles played by surface inhomogeneities, the formation of non-smooth

irregularities such as cusps, and incorporating non-steady corrections into the present approximation. One
could also consider the dynamics of dewetting films by solving an exterior Laplacian problem, as done in

[26].
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Appendix A. Justification of the quasi-steady limit

We can formally derive a condition for when the quasi-steady assumption is valid by dimensional anal-

ysis. In the interior of the fluid droplet, capillary relaxation will proceed according to the lubrication equa-

tion (e.g. [9])
ht ¼ c=3lr � ðh3rDhÞ;

where l is the viscosity. Let W,H be the typical scales for width and height of a droplet. Nondimensionalize

by rescaling
x ¼ Wx0; h ¼ Hh0; t ¼ sct0: ð36Þ

The natural timescale for capillary relaxation sc can be defined in a way so that the resulting non-dimen-

sionalized equation is free of parameters by setting
sc ¼
W 4

H 3
c=3l;
leading to
Ht0 ¼ r � ðH 3rDHÞ:

If Vl is the typical contact line velocity, the timescale for contact line movement is, with respect to the

same rescaling
sl ¼
W
V l

: ð37Þ
For capillary relaxation to dominate, one needs sc�sl which is the same as
V l

c=3l
� a3; a ¼ H

W
¼ aspect ratio:
The quantity on the left is the capillary number Ca. Under certain circumstances [13] one can show that

Ca is moderately small independent of the geometry, in the sense that is scales with a microscopic param-

eter � as Ca � Oð1= ln ��1Þ.
Appendix B. Linear analysis of a circular interface

We suppose here that the contact line law f(h) which admits an equilibrium f(he) = 0. An equilibrium

drop of radius r0 in polar coordinates (r,/) has the shape described by
h0ðr;/Þ ¼ Að1� ðr=r0Þ2Þ; A ¼ 1

2
r0he:
Suppose that the contact line�s position is given by the graph r = g(/,t), and is subject to the perturbation
g ¼ r0 þ �ert cos k/; k ¼ 1; 2; 3; . . .
Expanding the droplet shape as h = h0 + �h1 + � � � and the Lagrange multiplier in (3) in a similar way, the

leading order perturbation h1 satisfies
Dh1 ¼ k1;
Z
X
h1dA ¼ 0; h1ðr0;/Þ ¼ hee

rt cos k/:
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The solution to this constrained boundary value problem is
h1 ¼ heðr=r0Þkert cos k/:

Expanding the normal derivative in powers of �,
oh
on

ðg;/Þ ¼ �he þ �
oh1
on

ðr0;/Þ þ
o2h0
on2

ðr0;/Þert cos k/
� �

þ Oð�2Þ

¼ �he þ �½ðk � 1Þhe=r0�ert cos k/þ Oð�2Þ:
At order �, the normal velocity is then
rert cos k/ ¼ f ð�oh=onÞ ¼ �½ðk � 1Þf 0ðheÞhe=r0�ert cos k/;

so that
r ¼ �ðk � 1Þf 0ðheÞhe=r0:

The neutrally growing mode k = 1 is just a translation of the drop; the other modes decay at the mod-

erate rate r � �k.
Appendix C. Computation of the tangential velocity

Let xi be the ith gridpoint, and identify xn with x0. The curve C is evolved according to (19) using the

normal Vn and tangential Vt velocity components. Given Vn, we need to find the tangential velocity

Vi ” Vt(xi) which maintains the constraint of equal spacing
jxiþ1ðt þ DtÞ � xiðt þ DtÞj2 ¼ C; 1 6 i 6 n;
where C is an unknown constant. Letting z = x(t) + DtVnn and using (19), this amounts to solving the

weakly nonlinear problem,
2ðziþ1 � ziÞ � ðV iþ1tiþ1 � V itiÞ ¼ �jziþ1 � zij2 � jV iþ1tiþ1 � V itij2 þ C; 1 6 i 6 n;
where ti is the tangent vector at xi. Subtracting the ith and (i � 1)th equations eliminates C and gives
ðziþ1 � ziÞ � tiþ1V iþ1 þ ðzi � zi�1Þ � ti�1V i�1 � ðziþ1 � zi�1Þ � tiV i

¼ � 1

2
½jziþ1 � zij2 � jzi � zi�1j2 þ jV iþ1tiþ1 � V itij2 � jV iti � V i�1ti�1j2�; 1 6 i 6 n:
The left hand side is linear in V, and the whole system can be solved efficiently by iteration.
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